A Fundamental Investigation of the Tensile Failure of Rock Using the Three-Dimensional Lattice

Gao‑Feng Zhao

A fundamental study on the tensile failure of rock is conducted using the three-dimensional lattice spring model. The model covers three aspects: (1) the relationship between the mesoscopic tensile/shear failure and the corresponding macroscopic tensile failure; (2) the effects of the size, shape, and location of the initial defect on the macroscopic tensile failure; and (3) the effects of the porosity, heterogeneity, crystal structure, mesoscopic constitutive model, and model scale on its macroscopic tensile responses. Through investigation, this study reveals that the mesoscopic strength heterogeneity affects the macroscopic pre-peak response of rock, and the initial defect could control its macroscopic post-peak response. The postpeak characteristics of the mesoscopic constitutive model influence both the macroscopic pre-peak and post-peak responses, which are scale independent and scale dependent, respectively. Based on these investigations, a parameter-selection method for the mesoscopic constitutive model is established to fully utilize the macroscopic tensile experimental data.

文章分类: 文献